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We propose insight into the analysis of the record-breaking fluctuations in random time series, which permits
to distinguish between the self-organized criticality and the record dynamics �RD� scenarios of system evolu-
tion, using a finite time series realization. Performed analysis of the time series associated with the historical
prices of different commodities has shown that the evolution of commodity markets is controlled by the
record-breaking fluctuations as it is outlined by the RD. Furthermore, we found that the sizes of record-
breaking fluctuations follow a fat-tailed distribution and the devil’s-staircase-like records of price ranges are
multiaffine and persistent, nevertheless, the high moments �q�qC�2� of their q-order height-height correla-
tion functions behave logarithmically.
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The evolution of many complex systems occurs in terms
of sudden outburst activity separated by periods of relative
quiescence �1,2�. The intermittent activity has been observed
in a great variety of systems studied in physics �3�, biology
�4,5�, geosciences �6�, and econophysics �7�. It was sug-
gested that this behavior may be caused by self-organization
of the system into a “critical state” in which the system exists
in a state of punctuated equilibrium �1,8�. This is known
today as the self-organized criticality �SOC�. The essential
feature of SOC systems is that they evolve, slowly driven by
means of an external force, into a stationary critical state in
which the distribution of intermittent events �quakes or ava-
lanches� follows a power law �9�. However, the evolution of
a great variety of physical, biological, economic, and social
systems is essentially nonstationary, because the quakes
gradually change both the physical and statistical properties
of the system �2�. In many cases these intermittent changes
are characterized by the decelerating rate associated with the
log-Poisson statistics, since the aging tends on the average to
increase the stability of subsequent metastable states �2,4�.
The relevant examples range from the evolution in rugged
fitness landscapes �10� to biological macroevolution, �11�
and from the aging in spin glasses �12� to magnetic relax-
ation in type-II superconductors �2�. The coarse-grained ag-
ing dynamics ruling the system through a sequence of gradu-
ally deeper attractors was outlined by the paradigm of record
dynamics �RD�, which deals with the largest values of rel-
evant parameters assumed by up to the current time t �2�.

In contrast to the SOC scenario, the RD is concerned with
the non-steady-state statistics of a system in which the rel-
evant macroscopic variables slowly change in time at a de-
celerating rate �4,10–12�. RD makes no statement about the
quake size distribution, since a system ruled by the record-
breaking fluctuations may either achieve or not achieve the
critical state �2�. So, to model a system displaying intermit-
tent activity, first of all we need to distinguish between two
fundamentally different scenarios of system evolution.

In many cases, the analysis of time series of appropriate
observables, p�t�, has been shown to give important informa-

tion regarding the underlying processes responsible for the
observed macroscopic behavior �13�. Specifically, in the case
of SOC, the time series is expected to be stationary, whereas
the RD is associated with the logarithmic increase �decrease�
in the mean and variance of the analyzed signal �2�. How-
ever, in many cases the problem of characterizing and quan-
tifying a system dynamics from a finite realization of a time
series is not a trivial one. For example, the moving averages
and variances of prices of many commodities measured in
constant dollars �see Fig. 1�a�� fluctuate only slightly around
their mean values �see Fig. 2�a��, nevertheless, the time se-
ries range increases with time �see Fig. 1�c��. Furthermore,
we are not always able to detect the RD from finite realiza-
tions of time series, because the record signal M�t�
=max p�t�, as it is defined in the tangled nature and restricted
occupancy models of RD �2�, remains constant during a long
time period, comparable with the time series realization
length, T �see Fig. 1�a��.

Fortunately, in many cases the analysis of time series fluc-
tuations can give important additional information regarding
the underlying processes responsible for the observed mac-
roscopic behavior of the system. The fluctuations of any time
series can be characterized by the magnitude �absolute value�
of changes and their direction �sign� �14�. The magnitude
series relates to the nonlinear properties of the original time
series, while the sign series relates to the linear properties
�13�. It was found that the magnitude of fluctuations of many
apparent random time series follows a fat-tailed distribution
and exhibits long-range power-law correlations, character-
ized by the so-called Hurst exponent � �13,14�. The “sign
time series” also displays the scale-invariant dynamics, but
with a different scaling exponent �sign �13�. Moreover, the
scaling properties of negative and positive changes of real-
world time series may be different �15,16�. This asymmetry
should be reflected in the scaling behavior of the time series
range, R�t�=max0�t�T p�t�−min0�t�T p�t�, and so, the range
of such a time series seems to be an appropriate characteris-
tic of the record-breaking fluctuations.

In this work, we analyzed the time series of historical
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prices for some commodities �17� �crude oil, natural gas, and
gold�. Previously, the fluctuations in these time series were
studied in Refs. �18–20�. It was found that the magnitude of
price changes ��P�t ,��� exhibit the long-range power-law
correlations, nevertheless, the price P�t� and the price
changes �P�t ,��= P�t+��− P�t� are uncorrelated beyond
rather short time scales �16,18–20�. Furthermore, it was
noted that the distributions of negative and positive changes
of prices are fat tailed and characterized by slightly different
exponents �14�. Hence, one may expect that the analysis of
the range records of these time series permits to distinguish
between the SOC and RD scenarios of system evolution and
gives additional information about the correlations in the
market dynamics.

Accordingly, in this work we were focused on the scaling
behavior of R�t� and its relation to the scaling behavior of the
sign and magnitude of price changes. To test the correlations
in the analyzed time series, we studied the autocorrelation
function, C���= �p�t+��p�t��T / �p2�t��T, where the angle
brackets denote the time average. The scaling properties of
�nonstationary �21�� time series and their ranges were studied
by calculating the q-order height difference correlation
function

�q��� = ��p�t� − p�t + ���q�T
1/q � ��q, �1�

for 0.01	q�100; here �q is the spectrum of scaling expo-
nents �22�. Furthermore, the Hurst exponent, �=�2, of each
time series was also determined from the scaling behavior of
the power spectrum, S�
�= �p̂�
�p̂�−
���
−�2�+1�, where
p̂�
�=T−1/2�dx�p�t�− �p�t��T�exp�i
t� is the Fourier trans-
form of p�t�.

Figures 1�a� and 1�b� show the daily records of the spot
prices, P�t�, and price changes, �P�t�= P�t+1�− P�t�, from
the West Texas Intermediate crude oil price listings �17�. To
avoid the effect of inflation, we analyzed the crude oil price
in constant 2003 US dollars over the period from 2 January
1986 to 28 May 2004 representing T=4652 observations
�weekends and business holidays are excluded�. Earlier we
found �19� that the autocorrelation function of the price time
series decays exponentially as C�exp�−� /�0� with a charac-
teristic time �0=120 business days �about half the business
year�. Furthermore, we found that �q=�2=�=0.5±0.02 �19�.
So, there are no long-range correlations in the time series of
crude oil prices, as well as in the time series of prices of
other studied commodities �18–20�. This is consistent with
the finding that the prices of commodities follow the sym-
metric logistic distribution �see Fig. 2�b��.

At the same time, we noted that the absolute values of
negative price changes, ��P−�, are generally larger than posi-
tive changes, �P+�0 �see Fig. 1�b��, while the number �fre-
quency� of positive changes N+�t� are slightly larger then the
number of negative changes N−�t�. Moreover, we found that
the difference �N�t�=N+−N− possesses a linear trend �see
Fig. 1�c��, whereas the difference between the absolute val-
ues of consecutive-ordered negative and positive changes
scales as ��n�= ��P−�−�P+�n−0.3 �see inset in Fig. 1�b��. As
a result of these “leverage effects,” the price range R�t� dis-
plays a stepwise increase with a logarithmic trend �Fig. 1�d��.

Furthermore, we found that the ratio r= �ti− ti−1� / ti of the
waiting time between quakes �price range increments�, y= ti
− ti−1, and the time of the �i−1�th quake, x= ti−1, remains
nearly constant over about four orders of magnitude �see
inset in Fig. 2�c��. The cumulative distribution of this ratio
displays a logarithmic trend over about two decades �see Fig.
2�c��, while the distribution of log waiting times, z
=ln�ti / ti−1�, is exponential �see Fig. 2�d��, which suggests
�23� that the “quakes” follow the log-Poisson distribution.

Therefore, the data presented in Figs. 1�d�, 2�c�, and 2�d�
provide strong evidence of the RD nature �see Refs. �2,4�� of
crude oil market evolution; nevertheless, the quake sizes
�range increments, �R=R�ti�−R�ti−1�, see Fig. 3�a�� follow
the fat-tailed log-logistic distribution �Fig. 3�b�� with Lévy

FIG. 1. �a� Time series of West Texas Intermediate crude oil spot
price in the current �1� and in the 2003 constant �2� dollars per
barrel, $/bbl �source: Bloomberg database �17��. �b� Time series of
price changes �inset: �n vs n in the log-log coordinates�. �c� The
graph of �N vs the calendar time. �d� Time series of price range
�the inset shows the logarithmic trend of R�t��.
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index �=2.58 outside the Lévy stable range �0	�	2�,
which indicates the presence of the long-range correlations in
the price range behavior.

Furthermore, the scaling analysis shows �see Figs.
3�c�–3�e� that R�t� has a nontrivial scaling behavior. Specifi-
cally, we found that the high-order moments of height-height
correlations depend logarithmically on � �see Fig. 3�e��, e.g.,

�q��� = b�q�ln � − a�q� for q � qC, �2�

where a�q� and b�q� are decreasing functions of q, and qC is
the critical order. The lower moments �q�qC� display a mul-
tiaffine power-law scaling �1� �see Figs. 3�d� and 3�e�� char-
acterized by the following spectrum of scaling exponents
�see Fig. 3�f��:

FIG. 2. �a� The moving average �1� and stan-
dard deviation �2�, and �b� the conditional prob-
ability distribution of crude oil price in constant
dollars. �c� The cumulative distribution F�r� of
the ratio r= �ti− ti−1� / ti in semilog coordinates
�the inset shows the ratio r= �ti− ti−1� / ti of the
waiting time between quakes vs the time of the
�i−1�th quake, x= ti−1�. �d� The distribution F�k
�z� of the log waiting times, z=ln�ti / ti−1�, in
semilog coordinates.

FIG. 3. �a� Time series of price
range changes �R �quakes�. �b�
Conditional probability distribu-
tion of �R �inset: the distribution
trend in the log-log coordinates�.
�c� Power spectrum of the time se-
ries R�t� shown in Fig. 1�d�. �d�
and �e� Graphs of �q��� in the log-
log coordinates: �d� from bottom
to top q=0.01, 0.015, 0.025, 0.05,
0.1; �e� q=0.5 �1�, q=1 �2�, and
q=2.2 �3� �solid lines—the
power-law fits: �1� �0.5

=0.0001�1.234, R2=0.9995; �2� �1

=0.017�0.745, R2=0.9969; �3� �2.2

=0.2741�0.492, R2=0.9695; and
pointed lines-the logarithmic fits:
�1� �0.5=0.02 ln �−0.056, R2

=0.8741; �2� �1=0.214 ln �
−0.474, R2=0.9689; �3� �2

=0.787 ln �−1.129, R2=0.9986.
�f� Graph of �q vs 1/q �dots-
experimental data, solid line-data
fit by Eq. �3� for 0.01�q�2.15�;
the inset shows the graph of �q vs
q.
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�q = �*	1 +
�

q

 for q � qC. �3�

The value qC is defined from the behavior of the square of
the correlation coefficient for data fitting using Eqs. �2� and
�3�: R2�1�
R2�2�, when q�qC, and R2�1�	R2�2�, when q
�qC �see Fig. 3�e��.

For the crude oil price range, R�t�, we found �*

=0.31±0.01, �=1.58±0.02, and qC=2.15 �see Figs. 3�e� and
3�f��, e.g., �2=0.56±0.02 �see also Fig. 3�c��; i.e., R�t�, dis-
plays persistence. It should be emphasized that the same re-
sults were also obtained for different parts of length �T
=3650 observations� of the original time series �T=4652 ob-
servations�.

Furthermore, we found that the price ranges of all studied
commodities �natural gas and gold� display the multiaffine
devil’s-staircase-like behavior characterized by the spectrum

of scaling exponents �3� with 2	qC	3. We also found that
the range increments for all studied commodity prices follow
the fat-tailed distribution with the Lévy index 2	�	3 out-
side the Lévy stable range. Moreover, we found that for all
studied commodities the scaling exponents satisfy the em-
pirical relation

� = � − 1, �4�

and �* varies in the range 0.25	�*�0.5. Detailed results of
these studies will be published elsewhere.

We expect that our findings are applicable to a wide vari-
ety of systems with dynamics controlled by the record-
breaking fluctuations.
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